
15

Matrices

In this chapter, we discuss basic definitions and results concerning matrices.
We shall start out with a very general point of view, discussing matrices
whose entries lie in an arbitrary ring R. Then we shall specialize to the case
where the entries lie in a field F , where much more can be said.

One of the main goals of this chapter is to discuss “Gaussian elimination,”
which is an algorithm that allows us to efficiently compute bases for the
image and kernel of an F -linear map.

In discussing the complexity of algorithms for matrices over a ring R, we
shall treat a ring R as an “abstract data type,” so that the running times of
algorithms will be stated in terms of the number of arithmetic operations in
R. If R is a finite ring, such as Zm, we can immediately translate this into a
running time on a RAM (in later chapters, we will discuss other finite rings
and efficient algorithms for doing arithmetic in them).

If R is, say, the field of rational numbers, a complete running time analysis
would require an additional analysis of the sizes of the numbers that appear
in the execution of the algorithm. We shall not attempt such an analysis
here—however, we note that all the algorithms discussed in this chapter do
in fact run in polynomial time when R = Q, assuming we represent rational
numbers as fractions in lowest terms. Another possible approach for dealing
with rational numbers is to use floating point approximations. While this
approach eliminates the size problem, it creates many new problems because
of round-off errors. We shall not address any of these issues here.

15.1 Basic definitions and properties

Throughout this section, R denotes a ring.
For positive integers m and n, an m × n matrix A over a ring R is a
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rectangular array

A =


a11 a12 · · · a1n

a21 a22 · · · a2n
...

...
...

am1 am2 · · · amn

 ,

where each entry aij in the array is an element of R; the element aij is called
the (i, j) entry of A, which we may denote by A(i, j). For i = 1, . . . ,m, the
ith row of A is

(ai1, . . . , ain),

which we may denote by A(i), and for j = 1, . . . , n, the jth column of A is
a1j

a2j
...

amj

 ,

which we may denote by A(·, j). We regard a row of A as a 1 × n matrix,
and a column of A as an m× 1 matrix.

The set of all m × n matrices over R is denoted by Rm×n. Elements of
R1×n are called row vectors (of dimension n) and elements of Rm×1

are called column vectors (of dimension m). Elements of Rn×n are
called square matrices (of dimension n). We do not make a distinction
between R1×n and R×n; that is, we view standard n-tuples as row vectors.
Also, where there can be no confusion, we may interpret an element of R1×1

simply as an element of R.

We can define the familiar operations of scalar multiplication, addition,
and multiplication on matrices:

• If A ∈ Rm×n and c ∈ R, then cA is the m × n matrix whose (i, j)
entry is cA(i, j).

• If A,B ∈ Rm×n, then A + B is the m × n matrix whose (i, j) entry
is A(i, j) +B(i, j).

• If A ∈ Rm×n and B ∈ Rn×p, then AB is the m × p matrix whose
(i, k) entry is

n∑
j=1

A(i, j)B(j, k).
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We can also define the difference A−B := A+ (−1R)B of matrices of the
same dimension, which is the same as taking the difference of corresponding
entries. These operations satisfy the usual properties:

Theorem 15.1. If A,B,C ∈ Rm×n, U, V ∈ Rn×p, Z ∈ Rp×q, and c, d ∈ R,
then

(i) c(dA) = (cd)A = d(cA),
(ii) (A+B) + C = A+ (B + C),
(iii) A+B = B +A,
(iv) c(A+B) = cA+ cB,
(v) (c+ d)A = cA+ dA,
(vi) (A+B)U = AU +BU ,
(vii) A(U + V ) = AU +AV ,
(viii) c(AU) = (cA)U = A(cU),
(ix) A(UZ) = (AU)Z.

Proof. All of these are trivial, except the last one which requires just a bit
of computation to show that the (i, `) entry of both A(UZ) and (AU)Z is
(verify)

n∑
j=1

p∑
k=1

A(i, j)U(j, k)Z(k, `). 2

Note that while matrix addition is commutative, matrix multiplication in
general is not.

Some simple but useful facts to keep in mind are the following:
• If A ∈ Rm×n and B ∈ Rn×p, then the kth column of AB is equal to
Av, where v = B(·, k); also, the ith row of AB is equal to wB, where
w = A(i).

• If A ∈ Rm×n and u = (u1, . . . , um) ∈ R1×m, then

uA =
m∑

i=1

uiA(i).

In words: uA is a linear combination of the rows of A, with coefficients
taken from the corresponding entries of u.

• If A ∈ Rm×n and

v =

v1
...
vn

 ∈ Rn×1,
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then

Av =
n∑

j=1

vjA(·, j).

In words: Av is a linear combination of the columns of A, with coef-
ficients taken from the corresponding entries of v.

If A ∈ Rm×n, the transpose of A, denoted by A>, is defined to be the
n×m matrix whose (j, i) entry is A(i, j).

Theorem 15.2. If A,B ∈ Rm×n, C ∈ Rn×p, and c ∈ R, then

(i) (A+B)> = A> +B>,

(ii) (cA)> = cA>,

(iii) (A>)> = A,

(iv) (AC)> = C>A>.

Proof. Exercise. 2

An n× n matrix A is called a diagonal matrix if A(i, j) = 0R for i 6= j,
which is to say that the entries off the “main diagonal” of A are all zero. A
scalar matrix is a diagonal matrix whose diagonal entries are all the same.
The scalar matrix I, where all the entries on the main diagonal are 1R, is
called the n × n identity matrix. It is easy to see that if A is an n × n
matrix, then AI = IA = A. More generally, if B is an n ×m matrix, then
IB = B, and if C is an m× n matrix, then CI = C.

If Ai is an ni × ni+1 matrix, for i = 1, . . . , k, then by associativity of
matrix multiplication (part (ix) of Theorem 15.1), we may write the product
matrix A1 · · ·Ak, which is an n1×nk+1 matrix, without any ambiguity. For
an n × n matrix A, and a positive integer k, we write Ak to denote the
product A · · ·A, where there are k terms in the product. Note that A1 = A.
We may extend this notation to k = 0, defining A0 to be the n× n identity
matrix.

One may readily verify the usual rules of exponent arithmetic: for non-
negative integers k1, k2, we have

(Ak1)k2 = Ak1k2 and Ak1Ak2 = Ak1+k2 .

It is easy also to see that part (iv) of Theorem 15.2 implies that for all
non-negative integers k, we have

(Ak)> = (A>)k.
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Algorithmic issues

For computational purposes, matrices are represented in the obvious way as
arrays of elements of R. As remarked at the beginning of this chapter, we
shall treat R as an “abstract data type,” and not worry about how elements
of R are actually represented; in discussing the complexity of algorithms,
we shall simply count “operations in R,” by which we mean additions, sub-
tractions, multiplications; we shall sometimes also include equality testing
and computing multiplicative inverses as “operations in R.” In any real
implementation, there will be other costs, such as incrementing counters,
and so on, which we may safely ignore, as long as their number is at most
proportional to the number of operations in R.

The following statements are easy to verify:

• We can multiply an m×n matrix times a scalar using mn operations
in R.

• We can add two m× n matrices using mn operations in R.

• We can multiply an m×n matrix and an n×p matrix using O(mnp)
operations in R.

It is also easy to see that given an m ×m matrix A, and a non-negative
integer e, we can adapt the repeated squaring algorithm discussed in §3.4
so as to compute Ae using O(len(e)) multiplications of m×m matrices, and
hence O(len(e)m3) operations in R.

15.2 Matrices and linear maps

Let R be a ring.
For positive integers m and n, we may naturally view R1×m and R1×n

as R-modules. If A is an m× n matrix over R, then the map σ that sends
v ∈ R1×m to vA ∈ R1×n is easily seen to be an R-linear map. Evidently,
σ is injective if and only if the rows of A are linearly independent, and σ

is surjective if and only if the rows of A span R1×n. Likewise, the map τ

that sends w ∈ Rn×1 to Aw ∈ Rm×1 is also an R-linear map. Again, τ is
injective if and only if the columns of A are linearly independent, and τ is
surjective if and only if the columns of A span Rm×1.

Thus, the matrix A defines in a natural way two different linear maps,
one defined in terms of multiplying a row vector on the right by A, and the
other in terms multiplying a column vector on the left by A. With either
of these interpretations as a linear map, matrix multiplication has a natural
interpretation as function composition. Let A ∈ Rm×n and B ∈ Rn×p, and
consider the product matrix C = AB. Let σA, σB, σC be the maps defined
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by multiplication on the right by A,B,C, and let τA, τB, τC be the maps
defined by multiplication on the left by A,B,C. Then it easily follows from
the associativity of matrix multiplication that σC = σB◦σA and τC = τA◦τB.

We have seen how matrix/vector multiplication defines a linear map. Con-
versely, we shall now see that the action of any R-linear map can be viewed
as a matrix/vector multiplication, provided the R-modules involved have
bases (which will always be the case for finite dimensional vector spaces).

Let M be an R-module, and suppose that A = (α1, . . . , αm), with m >

0, is a basis for M . In this setting, the ordering of the basis elements is
important, and so we refer to A as an ordered basis. Now, A defines
a canonical R-module isomorphism ε that sends (a1, . . . , am) ∈ R1×m to
a1α1 + · · ·+amαm ∈M . Thus, elements of M can be represented concretely
as elements of R1×m; however, this representation depends on the choice A
of the ordered basis. The vector ε−1(α) is called the coordinate vector of
α (with respect to A).

Let N be an R-module, and suppose B = (β1, . . . , βn), with n > 0, is an
ordered basis for N . Just as in the previous paragraph, B defines a canonical
R-module isomorphism δ : R1×n → N .

Now let ρ : M → N be an arbitrary R-linear map. For any α ∈ M , if
α = ε(a1, . . . , am), then because ρ is R-linear, we have

ρ(α) =
m∑

i=1

ρ(aiαi) =
m∑

i=1

aiρ(αi).

Thus, the action of ρ on M is completely determined by its action on the
αi.

Let us now define an m× n matrix T whose ith row, for i = 1, . . . ,m, is
defined to be δ−1(ρ(αi)), that is, the coordinate vector of ρ(αi) with respect
to the ordered basis B. With T defined in this way, then for any α ∈M we
have

δ−1(ρ(α)) = ε−1(α)T.

In words: if we multiply the coordinate vector of α on the right by T , we
get the coordinate vector of ρ(α).

A special case of the above is when M = R1×m and N = R1×n, and A
and B are the standard bases for M and N (i.e., for i = 1, . . . ,m, the ith
vector of A has a 1 in position i and is zero everywhere else, and similarly
for B). In this case, ρ(v) = vT for all v ∈ R1×m.

To summarize, we see that an R-linear map ρ from M to N , together with
particular ordered bases for M and N , uniquely determine a matrix T such
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that the action of multiplication on the right by T implements the action
of ρ with respect to the given ordered bases. There may be many ordered
bases for M and N to choose from, and different choices will in general
lead to different matrices. In any case, from a computational perspective,
the matrix T gives us an efficient way to compute the map ρ, assuming
elements of M and N are represented as coordinate vectors with respect to
the given ordered bases.

Of course, if one prefers, by simply transposing everything, one can equally
well represent the action of ρ in terms of the action of multiplication of a
column vector on the left by a matrix.

Example 15.1. Consider again the ring E = R[X]/(f), where f ∈ R[X] is
monic of degree `, and suppose that ` > 0 (see Examples 9.34, 9.43, 14.3,
and 14.22). Let f = f0 + f1X + · · · f`−1X

`−1 + X`, where f0, . . . , f`−1 ∈ R.
Consider the element η = [X]f ∈ E. Let ρ : E → E be the η-multiplication
map, that is, the map that sends α ∈ E to ηα ∈ E. This is an R-linear
map, and the matrix T ∈ R`×` that represents this map with respect to the
ordered basis 1, η, η2, . . . , η`−1 for E over R is readily seen to be

T =


0 1 0 · · · 0
0 0 1 · · · 0

. . .
0 0 0 · · · 1
−f0 −f1 −f2 · · · −f`−1

 ,

where for i = 1, . . . , ` − 1, the ith row of T contains a 1 in position i + 1,
and is zero everywhere else. This matrix is called the companion matrix
of f . 2

Exercise 15.1. Let F be a finite field, and let A be a non-zero m×n matrix
over F . Suppose one chooses a vector v ∈ F 1×m at random. Show that the
probability that vA is the zero vector is at most 1/|F |.

Exercise 15.2. Design and analyze a probabilistic algorithm that takes as
input matrices A,B,C ∈ Zm×m

p , where p is a prime. The algorithm should
run in time O(m2 len(p)2) and should output either “yes” or “no” so that
the following holds:

• if C = AB, then the algorithm should always output “yes”;

• if C 6= AB, then the algorithm should output “no” with probability
at least 0.999.
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15.3 The inverse of a matrix

Let R be a ring.
For a square matrix A ∈ Rn×n, we call a matrix X ∈ Rn×n an inverse of

A if XA = AX = I, where I is the n× n identity matrix.
It is easy to see that if A has an inverse, then the inverse is unique: if X

and Y were inverses, then multiplying the equation I = AY on the left by
X, we obtain X = X(AY ) = (XA)Y = IY = Y .

Because the inverse of A is uniquely determined, we denote it by A−1.
If A has an inverse, we say that A is invertible, or non-singular. If A
is not invertible, it is sometimes called singular. We will use the terms
“invertible” and “not invertible.” Observe that A is the inverse of A−1; that
is, (A−1)−1 = A.

If A and B are invertible n×n matrices, then so is their product: in fact,
it is easy to see that (AB)−1 = B−1A−1 (verify). It follows that if A is an
invertible matrix, and k is a non-negative integer, then Ak is invertible with
inverse (A−1)k, which we also denote by A−k.

It is also easy to see that A is invertible if and only if the transposed matrix
A> is invertible, in which case (A>)−1 = (A−1)>. Indeed, AX = I = XA

holds if and only if X>A> = I = A>X>

The following theorem connects invertibility to linear maps.

Theorem 15.3. Let A ∈ Rn×n, and let ρ : R1×n → R1×n be the R-linear
map that sends v ∈ R1×n to vA. Then A is invertible if and only if ρ is
bijective.

Proof. Suppose A is invertible, and let X ∈ Rn×n be its inverse. The map ρ
is surjective, since for any w ∈ R1×n, w = wI = wXA = ρ(wX). The map
ρ is injective, since if ρ(v) = 01×n, then v = vI = vAX = ρ(v)X = 01×n.

Suppose ρ is bijective, so that it is an R-module isomorphism. The inverse
map ρ−1 is also an R-module isomorphism. LetX be the matrix representing
ρ−1 with respect to the standard basis for R1×n, so that for w ∈ R1×n, we
have wX = ρ−1(w). Since ρ ◦ ρ−1 = ρ−1 ◦ ρ = the identity map, it follows
that XA = AX = I. 2

We also have:

Theorem 15.4. Let A ∈ Rn×n. The following are equivalent:

(i) A is invertible;

(ii) the rows of A form a basis for R1×n;

(iii) the columns of A form a basis for Rn×1.
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Proof. The equivalence of (i) and (ii) follows from the previous theorem,
and the fact that the map ρ in that theorem is bijective if and only if the
rows of A form a basis for R1×n. The equivalence of (i) and (iii) follows by
considering the transpose of A. 2

Exercise 15.3. Let R be a ring, and let A be a square matrix over R. Let
us call X a left inverse of A if XA = I, and let us call Y a right inverse
of A if AY = I.

(a) Show that if A has both a left inverse X and a right inverse Y , then
X = Y and hence A is invertible.

(b) Assume that R is a field. Show that if A has either a left inverse or
a right inverse, then A is invertible.

Note that part (b) of the previous exercise holds for arbitrary rings, but
the proof of this is non-trivial, and requires the development of the theory
of determinants, which we do not cover in this text.

Exercise 15.4. Show that if A and B are two square matrices over a field
such that their product AB is invertible, then both A and B themselves
must be invertible.

Exercise 15.5. Show that if A is a square matrix over an arbitrary ring,
and Ak is invertible for some k > 0, then A is invertible.

15.4 Gaussian elimination

Throughout this section, F denotes a field.
A matrix B ∈ Fm×n is said to be in reduced row echelon form if there

exists a sequence of integers (p1, . . . , pr), with 0 ≤ r ≤ m and 1 ≤ p1 < p2 <

· · · < pr ≤ n, such that the following holds:
• for i = 1, . . . , r, all of the entries in row i of B to the left of entry

(i, pi) are zero (i.e., B(i, j) = 0 for j = 1, . . . , pi − 1);
• for i = 1, . . . , r, all of the entries in column pi of B above entry (i, pi)

are zero (i.e., B(i′, pi) = 0 for i′ = 1, . . . , i− 1);
• for i = 1, . . . , r, we have B(i, pi) = 1;
• all entries in rows r + 1, . . . ,m of B are zero (i.e., B(i, j) = 0 for
i = r + 1, . . . ,m and j = 1, . . . , n).

It is easy to see that if B is in reduced row echelon form, the sequence
(p1, . . . , pr) above is uniquely determined, and we call it the pivot sequence
of B. Several further remarks are in order:
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• All of the entries of B are completely determined by the pivot se-
quence, except for the entries (i, j) with 1 ≤ i ≤ r and j > i with
j /∈ {pi+1, . . . , pr}, which may be arbitrary.

• If B is an n × n matrix in reduced row echelon form whose pivot
sequence is of length n, then B must be the n× n identity matrix.

• We allow for an empty pivot sequence (i.e., r = 0), which will be the
case precisely when B = 0m×n.

Example 15.2. The following 4× 6 matrix B over the rational numbers is
in reduced row echelon form:

B =


0 1 −2 0 0 3
0 0 0 1 0 2
0 0 0 0 1 −4
0 0 0 0 0 0

 .

The pivot sequence of B is (2, 4, 5). Notice that the first three rows of B
are linearly independent, that columns 2, 4, and 5 are linearly independent,
and that all of other columns of B are linear combinations of columns 2, 4,
and 5. Indeed, if we truncate the pivot columns to their first three rows, we
get the 3× 3 identity matrix. 2

Generalizing the previous example, if a matrix is in reduced row echelon
form, it is easy to deduce the following properties, which turn out to be
quite useful:

Theorem 15.5. If B is a matrix in reduced row echelon form with pivot
sequence (p1, . . . , pr), then

(i) rows 1, 2, . . . , r of B are linearly independent;

(ii) columns p1, . . . , pr of B are linearly independent, and all other
columns of B can be expressed as linear combinations of columns
p1, . . . , pr.

Proof. Exercise—just look at the matrix! 2

Gaussian elimination is an algorithm that transforms an arbitrarym×n
matrix A into a m×n matrix B, where B is a matrix in reduced row echelon
form obtained from A by a sequence of elementary row operations.
There are three types of elementary row operations:

Type I: swap two rows,

Type II: multiply a row by a non-zero scalar,

Type III: add a scalar multiple of one row to a different row.
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The application of any specific elementary row operation to an m × n

matrix C can be affected by multiplying C on the left by a suitable m×m
matrix M . Indeed, the matrix M corresponding to a particular elementary
row operation is simply the matrix obtained by applying the same elemen-
tary row operation to the m×m identity matrix. It is easy to see that for
any elementary row operation, the corresponding matrix M is invertible.

We now describe the basic version of Gaussian elimination. The input is
an m× n matrix A.

1. B ← A, r ← 0
2. for j ← 1 to n do
3. `← 0, i← r

4. while ` = 0 and i ≤ m do
5. i← i+ 1
6. if B(i, j) 6= 0 then `← i

7. if ` 6= 0 then
8. r ← r + 1
9. swap rows B(r) and B(`)

10. B(r)← B(r, j)−1B(r)
11. for i← 1 to m do
12. if i 6= r then
13. B(i)← B(i)−B(i, j)B(r)
14. output B

The algorithm works as follows. First, it makes a copy B of A (this
is not necessary if the original matrix A is not needed afterwards). The
algorithm proceeds column by column, starting with the left-most column,
so that after processing column j, the first j columns of B are in reduced row
echelon form, and the current value of r represents the length of the pivot
sequence. To process column j, in steps 3–6 the algorithm first searches
for a non-zero element among B(r + 1, j), . . . , B(m, j); if none is found,
then the first j + 1 columns of B are already in reduced row echelon form.
Otherwise, one of these non-zero elements is selected as the pivot element
(the choice is arbitrary), which is then used in steps 8–13 to bring column j
into the required form. After incrementing r, the pivot element is brought
into position (r, j), using a Type I operation in step 9. Then the entry (r, j)
is set to 1, using a Type II operation in step 10. Finally, all the entries above
and below entry (r, j) are set to 0, using Type III operations in steps 11–13.
Note that because columns 1, . . . , j − 1 of B were already in reduced row
echelon form, none of these operations changes any values in these columns.

As for the complexity of the algorithm, it is easy to see that it performs
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O(mn) elementary row operations, each of which takes O(n) operations in
F , so a total of O(mn2) operations in F .

Example 15.3. Consider the execution of the Gaussian elimination algo-
rithm on input

A =

[0] [1] [1]
[2] [1] [2]
[2] [2] [0]

 ∈ Z3×3
3 .

After copying A into B, the algorithm transforms B as follows:[0] [1] [1]
[2] [1] [2]
[2] [2] [0]

 B(1)↔B(2)−−−−−−−→

[2] [1] [2]
[0] [1] [1]
[2] [2] [0]

 B(1)←[2]B(1)−−−−−−−−→

[1] [2] [1]
[0] [1] [1]
[2] [2] [0]


B(3)←B(3)−[2]B(1)−−−−−−−−−−−−→

[1] [2] [1]
[0] [1] [1]
[0] [1] [1]

 B(1)←B(1)−[2]B(2)−−−−−−−−−−−−→

[1] [0] [2]
[0] [1] [1]
[0] [1] [1]


B(3)←B(3)−B(2)−−−−−−−−−−−→

[1] [0] [2]
[0] [1] [1]
[0] [0] [0]


2

Suppose the Gaussian elimination algorithm performs a total of t elemen-
tary row operations. Then as discussed above, the application of the eth
elementary row operation, for e = 1, . . . , t, amounts to multiplying the cur-
rent value of the matrix B on the left by a particular invertible m×m matrix
Me. Therefore, the final, output value of B satisfies the equation

B = MA where M = MtMt−1 · · ·M1.

Since the product of invertible matrices is also invertible, we see that M
itself is invertible.

Although the algorithm as presented does not compute the matrix M , it
can be easily modified to do so. The resulting algorithm, which we call ex-
tended Gaussian elimination, is the same as plain Gaussian elimination,
except that we initialize the matrix M to be the m×m identity matrix, and
we add the following steps:

• Just before step 9, we add the step: swap rows M(r) and M(`).

• Just before step 10, we add the step: M(r)← B(r, j)−1M(r).

• Just before step 13, we add the step: M(i)←M(i)−B(i, j)M(r).
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At the end of the algorithm we output M in addition to B.
So we simply perform the same elementary row operations on M that we

perform on B. The reader may verify that the above algorithm is correct,
and that it uses O(mn(m+ n)) operations in F .

Example 15.4. Continuing with Example 15.3, the execution of the ex-
tended Gaussian elimination algorithm initializes M to the identity matrix,
and then transforms M as follows:[1] [0] [0]

[0] [1] [0]
[0] [0] [1]

 M(1)↔M(2)−−−−−−−−→

[0] [1] [0]
[1] [0] [0]
[0] [0] [1]

 M(1)←[2]M(1)−−−−−−−−−→

[0] [2] [0]
[1] [0] [0]
[0] [0] [1]


M(3)←M(3)−[2]M(1)−−−−−−−−−−−−−−→

[0] [2] [0]
[1] [0] [0]
[0] [2] [1]

 M(1)←M(1)−[2]M(2)−−−−−−−−−−−−−−→

[1] [2] [0]
[1] [0] [0]
[0] [2] [1]


M(3)←M(3)−M(2)−−−−−−−−−−−−→

[1] [2] [0]
[1] [0] [0]
[2] [2] [1]


2

Exercise 15.6. For each type of elementary row operation, describe the
matrix M which corresponds to it, as well as M−1.

Exercise 15.7. Given a matrix B ∈ Fm×n in reduced row echelon form,
show how to compute its pivot sequence using O(n) operations in F .

Exercise 15.8. In §4.4, we saw how to speed up matrix multiplication over
Z using the Chinese remainder theorem. In this exercise, you are to do
the same, but for performing Gaussian elimination over Zp, where p is a
large prime. Suppose you are given an m × m matrix A over Zp, where
len(p) = Θ(m). Straightforward application of Gaussian elimination would
require O(m3) operations in Zp, each of which takes time O(m2), leading to
a total running time of O(m5). Show how to use the techniques of §4.4 to
reduce the running time of Gaussian elimination to O(m4).

15.5 Applications of Gaussian elimination

Throughout this section, A is an arbitrary m×n matrix over a field F , and
MA = B, where M is an invertible m × m matrix, and B is in reduced
row echelon form with pivot sequence (p1, . . . , pr). This is precisely the in-
formation produced by the extended Gaussian elimination algorithm, given
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A as input (the pivot sequence can easily be “read” directly from B—see
Exercise 15.7).

Let V := F 1×m, W := F 1×n, and ρ : V → W be the F -linear map that
sends v ∈ V to vA ∈W .

Computing the image and kernel

Consider first the row space of A, that is, the vector space spanned by the
rows of A, or equivalently, the image of ρ.

We claim that the row space of A is the same as the row space of B. To
see this, note that for any v ∈ V , since B = MA, we have vB = v(MA) =
(vM)A, and so the row space of B is contained in the row space of A. For the
other containment, note that since M is invertible, we can write A = M−1B,
and apply the same argument.

Further, note that row space of B, and hence that of A, clearly has di-
mension r. Indeed, as stated in Theorem 15.5, the first r rows of B form a
basis for the row space of B.

Consider next the kernel of ρ, or what we might call the row null space
of A. We claim that the last m − r rows of M form a basis for ker(ρ).
Clearly, just from the fact that MA = B and the fact that the last m − r
rows of B are zero, it follows that the last m − r rows of M are contained
in ker(ρ). Furthermore, as M is invertible, its rows form a basis for V
(see Theorem 15.4), and so in particular, they are linearly independent. It
therefore suffices to show that the last m − r rows of M span the entire
kernel. Now, suppose there were a vector v ∈ ker(ρ) outside the subspace
spanned by the last m − r rows of M . As the rows of M span V , we may
write v = a1M(1) + · · · + amM(m), where ai 6= 0 for some i = 1, . . . , r.
Setting ṽ := (a1, . . . , am), we see that v = ṽM , and so

ρ(v) = vA = (ṽM)A = ṽ(MA) = ṽB,

and from the fact that the first r rows of B are linearly independent and
the last m − r rows of B are zero, we see that ṽB is not the zero vector
(and because ṽ has a non-zero entry in one its first r positions). We have
derived a contradiction, and hence may conclude that the last m − r rows
of M span ker(ρ).

Finally, note that if m = n, then A is invertible if and only if its row space
has dimension m, which holds if and only if r = m, and in the latter case,
B will be the identity matrix, and hence M is the inverse of A.

Let us summarize the above discussion:
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• The first r rows of B form a basis for the row space of A (i.e., the
image of ρ).

• The last m − r rows of M form a basis for the row null space of A
(i.e., the kernel of ρ).

• If m = n, then A is invertible (i.e., ρ is an isomorphism) if and
only if r = m, in which case M is the inverse of A (i.e., the matrix
representing ρ−1).

So we see that from the output of the extended Gaussian elimination
algorithm, we can simply “read off” bases for both the image and the kernel,
as well as the inverse (if it exists), of a linear map represented as a matrix
with respect to some ordered bases. Also note that this procedure provides
a “constructive” version of Theorem 14.29.

Example 15.5. Continuing with Examples 15.3 and 15.4, we see that the
vectors ([1], [0], [2]) and ([0], [1], [1]) form a basis for the row space of A, while
the vector ([2], [2], [1]) is a basis for the row null space of A. 2

Solving linear systems of equations

Suppose that in addition to the matrix A, we are given w ∈ W , and want
to find a solution v (or perhaps describe all solutions v), to the equation

vA = w. (15.1)

Equivalently, we can phrase the problem as finding an element (or describing
all elements) of the set ρ−1(w).

Now, if there exists a solution at all, say v ∈ V , then since ρ(v) = ρ(ṽ)
if and only if v ≡ ṽ (mod ker(ρ)), it follows that the set of all solutions to
(15.1) is equal to the coset v + ker(ρ). Thus, given a basis for ker(ρ) and
any solution v to (15.1), we have a complete and concise description of the
set of solutions to (15.1).

As we have discussed above, the last m− r rows of M give us a basis for
ker(ρ), so it suffices to determine if w ∈ img(ρ), and if so, determine a single
pre-image v of w.

Also as we discussed, img(ρ), that is, the row space of A, is equal to the
row space of B, and because of the special form of B, we can quickly and
easily determine if the given w is in the row space of B, as follows. By
definition, w is in the row space of B iff there exists a vector v̄ ∈ V such
that v̄B = w. We may as well assume that all but the first r entries of v̄
are zero. Moreover, v̄B = w implies that for i = 1, . . . , r, the ith entry if v̄
is equal to the pith entry of w. Thus, the vector v̄, if it exists, is completely
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determined by the entries of w at positions p1, . . . , pr. We can construct v̄
satisfying these conditions, and then test if v̄B = w. If not, then we may
conclude that (15.1) has no solutions; otherwise, setting v := v̄M , we see
that vA = (v̄M)A = v̄(MA) = v̄B = w, and so v is a solution to (15.1).

One easily verifies that if we implement the above procedure as an algo-
rithm, the work done in addition to running the extended Gaussian elimi-
nation algorithm amounts to O(m(n+m)) operations in F .

A special case of the above procedure is when m = n and A is invertible,
in which case (15.1) has a unique solution, namely, v := wM , since in this
case, M = A−1.

The rank of a matrix

Define the row rank of A to be the dimension of its row space, which is
dimF (img(ρ)), and define the column rank of A to be the dimension of its
column space, that is, the space spanned by the columns of A.

Now, the column space A may not be the same as the column space of
B, but from the relation B = MA, and the fact that M is invertible, it
easily follows that these two subspaces are isomorphic (via the isomorphism
that sends v to Mv), and hence have the same dimension. Moreover, by
Theorem 15.5, the column rank of B is r, which is the same as the row rank
of A.

So we may conclude: The column rank and row rank of A are the same.
Because of this, we define the rank of a matrix to be the common value

of its row and column rank.

The orthogonal complement of a subspace

So as to give equal treatment to rows and columns, one can also define
the column null space of A to be the kernel of the linear map defined
by multiplication on the left by A. By applying the results above to the
transpose of A, we see that the column null space of A has dimension n− r,
where r is the rank of A.

Let U ⊆ W denote the row space of A, and let Ū ⊆ W denote the set of
all vectors ū ∈ W whose transpose ū> belong to the column null space of
A. Now, U is a subspace of W of dimension r and Ū is a subspace of W of
dimension n− r.

Moreover, if U ∩ Ū = {0V }, then by Theorem 14.13 we have an isomor-
phism of U× Ū with U+ Ū , and since U× Ū has dimension n, it must be the
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case that U + Ū = W . It follows that every element of W can be expressed
uniquely as u+ ū, where u ∈ U and ū ∈ Ū .

Now, all of the conclusions in the previous paragraph hinged on the as-
sumption that U ∩ Ū = {0V }. The space Ū consists precisely of all vectors
ū ∈ W which are “orthogonal” to all vectors u ∈ U , in the sense that the
“inner product” uū> is zero. For this reason, Ū is sometimes called the
“orthogonal complement of U .” The condition U ∩ Ū = {0V } is equivalent
to saying that U contains no non-zero “self-orthogonal vectors” u such that
uu> = 0F . If F is the field of real numbers, then of course there are no
non-zero self-orthogonal vectors, since uu> is the sum of the squares of the
entries of u. However, for other fields, there may very well be non-zero self-
orthogonal vectors. As an example, if F = Z2, then any vector u with an
even number of 1-entries is self orthogonal.

So we see that while much of the theory of vector spaces and matrices car-
ries over without change from familiar ground fields, like the real numbers,
to arbitrary ground fields F , not everything does. In particular, the usual
decomposition of a vector space into a subspace and its orthogonal comple-
ment breaks down, as does any other procedure that relies on properties
specific to “inner product spaces.”

For the following three exercises, as above, A is an arbitrary m×n matrix
over a field F , and MA = B, where M is an invertible m×m matrix, and
B is in reduced row echelon form.

Exercise 15.9. Show that the column null space of A is the same as the
column null space of B.

Exercise 15.10. Show how to compute a basis for the column null space of
A using O(r(n− r)) operations in F , given A and B.

Exercise 15.11. Show that the matrix B is uniquely determined by A;
more precisely, show that if M ′A = B′, where M ′ is an invertible m × m
matrix, and B′ is in reduced row echelon form, then B′ = B.

In the following two exercises, the theory of determinants could be used;
however, they can all be solved directly, without too much difficulty, using
just the ideas developed so far in the text.

Exercise 15.12. Let p be a prime. A matrix A ∈ Zm×m is called invertible
modulo p if and only if there exists a matrix X ∈ Zm×m such that AX ≡
XA ≡ I (mod p), where I is the m ×m integer identity matrix. Here, two
matrices are considered congruent with respect to a given modulus if and
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only if their corresponding entries are congruent. Show that A is invertible
modulo p if and only if

• A is invertible over Q, and

• the entries of A−1 lie in Q(p) (see Example 9.23).

Exercise 15.13. You are given a matrix A ∈ Zm×m and a prime p such
that A is invertible modulo p. Suppose that you are also given w ∈ Z1×m.

(a) Show how to efficiently compute a vector v ∈ Z1×m such that vA =
w (mod p), and that v is uniquely determined modulo p.

(b) Given a vector v as in part (a), along with an integer e ≥ 1, show
how to efficiently compute v̂ ∈ Z1×m such that v̂A = w (mod pe), and
that v̂ is uniquely determined modulo pe. Hint: mimic the “lifting”
procedure discussed in §13.3.2.

(c) Using parts (a) and (b), design and analyze an efficient algorithm
that takes the matrix A and the prime p as input, together with a
bound H on the absolute value of the numerator and denominator of
the entries of the vector v′ that is the unique (rational) solution to
the equation v′A = w. Your algorithm should run in time polynomial
in the length of H, the length of p, and the sum of the lengths of the
entries of A and w. Hint: use rational reconstruction, but be sure to
fully justify its application.

Note that in the previous exercise, one can use the theory of determinants
to derive good bounds, in terms of the lengths of the entries of A and w, on
the size of the least prime p such that A is invertible modulo p (assuming
A is invertible over the rationals), and the length of the numerator and
denominator of the entries of rational solution v′ to the equation v′A = w.
The interested reader who is familiar with the basic theory of determinants
is encouraged to establish such bounds.

The next two exercises illustrate how Gaussian elimination can be
adapted, in certain cases, to work in rings that are not necessarily fields.
Let R be an arbitrary ring. A matrix B ∈ Rm×n is said to be in row eche-
lon form if there exists a pivot sequence (p1, . . . , pr), with 0 ≤ r ≤ m and
1 ≤ p1 < p2 < · · · < pr ≤ n, such that the following holds:

• for i = 1, . . . , r, all of the entries in row i of B to the left of entry
(i, pi) are zero;

• for i = 1, . . . , r, we have B(i, pi) 6= 0;

• all entries in rows r + 1, . . . ,m of B are zero.
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Exercise 15.14. Let R be the ring Zpe , where p is prime and e > 1. Let
π := [p] ∈ R. The goal of this exercise is to develop an efficient algorithm
for the following problem: given a matrix A ∈ Rm×n, with m > n, find a
vector v ∈ R1×m such that vA = 01×n but v 6∈ πR1×m.

(a) Show how to modify the extended Gaussian elimination algorithm
to solve the following problem: given a matrix A ∈ Rm×n, compute
M ∈ Rm×m and B ∈ Rm×n, such that MA = B, M is invertible,
and B is in row echelon form. Your algorithm should run in time
O(mn(m+ n)e2 len(p)2). Assume that the input includes the values
p and e. Hint: when choosing a pivot element, select one divisible
by a minimal power of π; as in ordinary Gaussian elimination, your
algorithm should only use elementary row operations to transform
the input matrix.

(b) Using the fact that the matrix M computed in part (a) is invertible,
argue that none of its rows belong to πR1×m.

(c) Argue that if m > n and the matrix B computed in part (a) has
pivot sequence (p1, . . . , pr), then m− r > 0 and if v is any one of the
last m− r rows of M , then vA = 01×n.

(d) Give an example that shows that the first r rows of B need not be
linearly independent and that the last m−r rows of M need not span
the kernel of the R-linear map that sends w ∈ R1×m to wA ∈ R1×n.

Exercise 15.15. Let R be the ring Z`, where ` > 1 is an integer. You are
given a matrix A ∈ Rm×n. Show how to efficiently compute M ∈ Rm×m

and B ∈ Rm×n such that MA = B, M is invertible, and B is in row echelon
form. Your algorithm should run in time O(mn(m + n) len(`)2). Hint: to
zero-out entries, you should use “rotations”—for integers a, b, d, s, t with

d = gcd(a, b) 6= 0 and as+ bt = d,

and for row indices r, i, a rotation simultaneously updates rows r and i of a
matrix C as follows:

(C(r), C(i))← (sC(r) + tC(i),− b
d
C(r) +

a

d
C(i));

observe that if C(r, j) = [a]` and C(i, j) = [b]` before applying the rotation,
then C(r, j) = [d]` and C(i, j) = [0]` after the rotation.

15.6 Notes

While a trivial application of the defining formulas yields a simple algorithm
for multiplying two m×m matrices over a ring R that uses O(m3) operations
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in R, this algorithm is not the best, asymptotically speaking. The currently
fastest algorithm for this problem, due to Coppersmith and Winograd [28],
uses O(mω) operations in R, where ω < 2.376. We note, however, that the
good old O(m3) algorithm is still the only one used in almost any practical
setting.


